
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Graphics Hardware 2007, San Diego, CA, August 04-05, 2007.

© 2007 ACM 978-1-59593-625-7/07/0008 $5.00

Graphics Hardware (2007)
Timo Aila and Mark Segal (Editors)

Accelerating Real-Time Shading with

Reverse Reprojection Caching

Diego Nehab1 Pedro V. Sander2 Jason Lawrence3 Natalya Tatarchuk4 John R. Isidoro4

1Princeton University 2Hong Kong University of Science and Technology 3University of Virginia 4Advanced Micro Devices, Inc.

Abstract

Evaluating pixel shaders consumes a growing share of the computational budget for real-time applications. How-

ever, the significant temporal coherence in visible surface regions, lighting conditions, and camera location al-

lows reusing computationally-intensive shading calculations between frames to achieve significant performance

improvements at little degradation in visual quality. This paper investigates a caching scheme based on reverse

reprojection which allows pixel shaders to store and reuse calculations performed at visible surface points. We

provide guidelines to help programmers select appropriate values to cache and present several policies for keeping

cached entries up-to-date. Our results confirm this approach offers substantial performance gains for many com-

mon real-time effects, including precomputed global lighting effects, stereoscopic rendering, motion blur, depth of

field, and shadow mapping.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Graphics data structures
and data types I.3.6 [Computer Graphics]: Interaction techniques

1 Introduction

As the power and flexibility of dedicated graphics hardware
continue to grow, a clear tendency in real-time rendering ap-
plications has been the steady increase in pixel shading com-
plexity. Today, a considerable portion of the graphics pro-
cessing budget is spent evaluating pixel shaders. Recent re-
search has therefore investigated general techniques for op-
timizing these computations, either by reducing their com-
plexity [OKS03, Pel05], or by reducing the number of frag-
ments generated [DWS∗88, NBS06].

In this paper, we develop a caching strategy that exploits
the inherent spatio-temporal coherence of real-time shading
calculations (Figure 1). At very high frame rates, and be-
tween consecutive frames, there is usually very little differ-
ence in the camera and lighting parameters, as well as in the
set of visible surface points, their properties, and final ap-
pearance. Therefore, recomputing each frame from scratch
is potentially wasteful. This coherence can be exploited to
reduce the average cost of generating a single frame with a
caching mechanism that allows storing, tracking and retriev-
ing the results of expensive calculations within a pixel shader
between consecutive frames. Although a number of caching

techniques have been developed in different rendering con-
texts, ours is uniquely designed for interactive applications
running on commodity GPUs which places strict constraints
on the computational resources and bandwidth that can be
allocated to cache maintenance.

We introduce a new caching strategy designed for real-
time applications based on reverse reprojection. As each
frame is generated, we store the desired data at visible sur-
face points in viewport-sized, off-screen buffers. As each
pixel is generated in the following frame, we reproject its
surface location into the last frame to determine if it was
previously visible and thus present in the cache. If available,
we can reuse its cached value in place of performing a re-
dundant and potentially expensive calculation, otherwise we
recompute it from scratch and make it available in the cache
for the next frame. Our approach does not require complex
data structures or bus traffic between the CPU and GPU, pro-
vides efficient cache access, and is simple to implement.

We demonstrate the utility of our approach by showing
how it can be used to accelerate a number of common real-
time shading effects. We report results for scenes that in-
corporate precomputed global lighting effects, stereoscopic

mailto:permissions@acm.org
http://www.eg.org
http://diglib.eg.org

Nehab et al. / Reverse Reprojection Caching

(a) Parthenon (b) Coherence (c) Heroine (d) Coherence (e) Ninja (f) Coherence

Figure 1: Real-time rendering applications exhibit a considerable amount of spatio-temporal coherence. This is true for camera

motion, as in the (a) Parthenon sequence, as well an animated scenes such as the (c) Heroine and (e) Ninja sequences. We

visualize this property in coherence maps (b, d, and f) that show newly visible surface points in red and points that were visible

in the previous frame in green. Our method allows pixel shaders to associate and store values with visible surface points that

can be efficiently retrieved in the following frame. For many applications, this provides substantial performance improvements

and introduces minimal error into the final shading.

rendering, motion blur, depth of field, and shadow mapping.
In summary, this paper makes the following contributions:
• We introduce a new caching scheme based on reverse re-

projection targeted for real-time shading calculations. It
provides a general and efficient mechanism for storing,
tracking, and sharing surface information through time
(Section 3);

• We develop a set of guidelines for selecting what values
to cache and under what circumstances (Section 4);

• We design and evaluate a variety of refresh policies for
keeping cached entries up-to-date (Section 5);

• We develop a theory for amortizing the cost of stochas-
tically estimating a quantity across multiple frames (Sec-
tion 6);

• We present a working prototype system and evaluate our
caching technique for a variety of common real-time ren-
dering applications (Section 7).

2 Related work

Reusing expensive calculations across frames generated at
nearby viewpoints or consecutively in animation sequences
has been studied in many rendering contexts. One of the
key differences in our approach is that we do not attempt
to reuse visibility information: only shading computations
are reused. Furthermore, we focus on exploiting coherence
in real-time pixel shaders with an approach that is targeted
for commodity graphics hardware. In this context, it is im-
portant to minimize the cache overhead and guarantee that
all the calculations occur on the GPU (thus limiting any bus
traffic between the GPU and CPU). On the other hand, there
are a number of computational advantages to implementing
a caching mechanism using modern graphics hardware; our
approach leverages hardware-supported Z-buffering and na-
tive texture filtering.

CPU-based methods to accelerate the off-line rendering
of animation sequences [Bad88, AH95, BDT99] generally
scatter shading information from one frame into the fol-
lowing by means of forward reprojection. This produces
gaps and occlusion artifacts that must be explicitly fixed,

increasing the complexity of these techniques and reducing
their efficiency. Similar problems caused by forward repro-
jection plague methods that attempt to bring interactivity to
off-line renderers [BFMZ94, WDP99], even in recent GPU-
accelerated revisions [DWWL05, ZWL05].

A better alternative is to use reverse reprojection and take
advantage of hardware support for gathering samples into
the current frame that were generated previously. This is
possible if the GPU has access to scene geometry, even in
simplified form. [CCC87], [WS99], [SS00], and [TPWG02]
follow this approach, and store samples in world-space. Un-
fortunately, these techniques require complex data structures
that are maintained on the CPU and introduce considerable
bus-traffic between the CPU and GPU (particularly for real-
time applications).

Instead of directly associating samples with geometry,
it is possible to store them in textures that are mapped to
static geometry [SHSS00]. Methods that replace geometry
by simpler image based representations [RH94, MS95] to
accelerate real-time rendering of complex environments em-
ploy a similar idea. However, maintaining and allocating
these textures also requires CPU intervention. In contrast,
our approach uses only off-screen buffers that are maintained
entirely on the GPU. Resolving cache hits and misses is
natively enforced by the Z-buffer and retrieval is handled
using native texture filtering. Unlike hardware-based sys-
tems [RP94, TK96] that also exploit coherence, our caching
scheme targets commodity hardware and does not require
explicit control from the programmer.

A final group of related methods exploit spatial coher-
ence to efficiently generate novel views from a set of im-
ages [CW93, MB95, MMB97]. Although our method can
also be interpreted as warping rendered frames, it was de-
signed to support dynamically generated scenes, such as
those found in games.

3 Reverse reprojection caching

The schematic diagram in Figure 2 illustrates the the type of
single-level cache we use to improve the performance of a

c© Association for Computing Machinery, Inc. 2007.

26

Nehab et al. / Reverse Reprojection Caching

Load/Reuse

Lookup Hit? Update

Recompute

yes

no

Figure 2: Schematic diagram of a single-level cache we use

to accelerate pixel-level shading calculations.

pixel shader. As each pixel is generated the shader tests if
the result of a particular calculation is available in the cache.
If so, the shader can reuse this value in the calculation of the
final pixel color. Otherwise, the shader executes as normal
and stores the cacheable value for potential reuse during the
next frame. Note that the value stored in the cache need not
be the final pixel color, but can be any intermediate calcula-
tion that would benefit from this type of reuse.

Three key factors determine whether a shader modified
with this type of cache is superior to its original version.
First, the hit path must be executed often enough to justify
its use. Second, the total cost of evaluating the shader in the
case of a cache hit must be less than the unmodified shader
(this includes the overhead of managing the cache). Third,
the values stored in the cache must remain relevant across
consecutive frames so as not to introduce significant errors
into the shading.

With this criteria in mind, we propose a very simple cache
policy: simply store values associated with visible surface
points in viewport-sized, off-screen buffers. This permits ef-
ficient reads and writes and provides a high rate of cache hits
(we discuss the third factor of maintaining relevant informa-
tion in the cache in Section 4).

Figure 3 shows quantitative evidence that this policy leads
to a high rate of cache hits. It plots the ratio of pixels that re-
main visible across two consecutive frames for the animation
sequences in Figure 1. The Parthenon sequence uses static
geometry and a moving camera to generate a fly-by of the
temple. Note that its slow camera motion results in very high
and uniform hit rates. The Heroine sequence shows an ani-
mated character with weighted skinned vertices running past
the camera. The rapid increase in coherence at the beginning
of the sequence is due to her entering the scene from the
right. Finally, the Ninja sequence shows an animated fighter
performing martial arts maneuvers. His fast kicks and move-
ments cause the periodic dips in the corresponding plot. For
all the scenes we have used to test our approach we observed
hit rates typically in excess of 90%.

To meet the second criterion of providing efficient cache
access, we note that our policy of maintaining cache en-
tries exclusively for visible surface points offers a number
of computational advantages:
• Using just one entry per pixel, the cache memory require-

ments are output sensitive and thus independent of scene
complexity;

• Cache entries are in one-to-one correspondence with

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
a
c
h
e
 h

it
 (

%
)

Frame number

Parthenon
Heroin

Ninja

Figure 3: Percentage of surface area that was mutually visi-

ble between consecutive frames for the animation sequences

in Figure 1. These high coherence rates (generally above

90%) justifies our policy of maintaining cache entries ex-

clusively at visible surface points.

screen pixels, so no coordinate translation is needed dur-
ing writes;
• The coordinate translation needed for cache lookups can

be efficiently performed within the vertex shader (Sec-
tion 3.1);
• The depth of each cached entry, required during the

lookup process, is already available in the Z-buffer (Sec-
tion 3.2);
• Native support for filtered texture lookups enables robust

detection of cache hits (Section 3.2), and high-quality
cache reads (Section 3.3);
• Data never leaves the GPU, thus eliminating inefficient

bus-traffic with the CPU.

We next detail how a pixel shader can be modified to provide
this type of caching.

3.1 Determining cache coordinates

The main computational challenge we face is to efficiently
compute the location of a pixel’s corresponding scene point
in the previous frame. We leverage hardware support for
perspective-correct interpolation [HM91] and move the bulk
of this computation from the pixel level to the vertex level.

At time t − 1, assume the result of a calculation that oc-
curs at each pixel has been stored in a screen-space buffer
(Figure 4, left). At the next frame, the homogeneous pro-
jection space coordinates (xt ,yt , zt ,wt)v of each vertex v at
time t are calculated in the vertex shader, to which the ap-
plication has provided the world, camera and projection ma-
trices and any animation parameters (such as tween factors
and blending matrices used for skinning). In our case, the
application also provides the vertex program with the trans-
formation parameters at t − 1, allowing it to compute the
projection-space coordinates of the same vertex at the pre-
vious frame (xt−1,yt−1, zt−1,wt−1)v. These coordinates be-
come attributes of each transformed vertex (Figure 4, right),
which in turn causes the hardware to interpolate them, auto-
matically giving each pixel p access to the projection-space

c© Association for Computing Machinery, Inc. 2007.

27

Nehab et al. / Reverse Reprojection Caching

t-1 t

ppppppppp
q

Figure 4: Left: Shading calculations and pixel depths in

frame t− 1 are stored in screen-space buffers. Right: In the

next frame, each vertex is also transformed by the model,

camera and projection matrices (along with any anima-

tion parameters) at time t − 1. These values become per-

vertex attributes that undergo perspective-correct interpo-

lation, giving each pixel access to its position in the cache.

To detect cache misses, we compare the reprojected depth of

a pixel p to the depth stored at its position in the cache at q.

coordinates (xt−1,yt−1, zt−1,wt−1)p of the generating sur-
face point at time t−1. The final cache coordinates pt−1 are
obtained with a simple division by (wt−1)p within the pixel
shader.

3.2 Detecting cache misses

A visible surface point p at time t may have been occluded
at time t− 1 by an unrelated point q (Figure 4). Except in the
case of intersecting geometry, it is not possible for the depths
of points p and q to match at time t− 1. We therefore com-
pare the depth of p at time t− 1, which was computed along
with its cache coordinates, to the value in the depth buffer at
time t− 1 (much like a shadow map test). If the cached depth
is within ε of the expected depth for p, we report a cache hit.
Otherwise, we report a cache miss. We use bilinear interpo-
lation to reconstruct the depth stored at the previous frame.
The weighted sum of values across significant depth varia-
tions will not match the reprojected depth received from the
vertex shader, therefore automatically resulting in a cache
miss. As a result, this greatly reduces the chance of reporting
a false cache hit and improperly reconstructing values near
depth discontinuities. To further improve robustness, we set
ε to the smallest Z-buffer increment (this value could also be
calculated using a technique such as [AS06]).

3.3 Cache resampling

A key advantage of our approach over those based on for-
ward reprojection is that it transforms the problematic scat-
tering of cached samples into a manageable gathering pro-
cess. However, since reprojected pixels will not, in general,
map to individual cached samples (Figure 4), some form of
resampling is necessary. The uniform structure of the cache
and native hardware support for texture filtering greatly sim-
plify this task. In fact, except at depth discontinuities, cache
lookups can be treated exactly as texture lookups.

The best texture filtering method depends on the data be-

ing cached and its function in the pixel shader. Nearest-
neighbor interpolation is sufficient for cached data that
varies smoothly, or that is further processed by the shader.
On the other hand, bilinear interpolation is appropriate when
there is considerable spatial variation in the cached entries,
especially if the value will be displayed. Regardless of the
method, however, repeatedly resampling the cache across
multiple frames will eventually attenuate high-frequency
content.

Although we can avoid resampling the cache near occlu-
sion boundaries by using bilinear interpolation to reconstruct
the depth (Section 3.2), this would not prevent wider recon-
struction kernels (e.g., trilinear or anisotropic filters) from
integrating across unrelated data. However, in practice there
is little change in the scene between frames, limiting the
amount of distortions in the reprojection map and eliminat-
ing the need to use more sophisticated reconstruction meth-
ods.

3.4 Control flow strategies

The fact that we can distinguish between cache hits and
misses allows us to write pixel shaders that execute a dif-
ferent path for each of these cases. We refer to the desired
code paths as the hit shader and miss shader, respectively.

The most straightforward approach is to branch between
the hit and miss shaders according to the depth test. If the
hardware supports dynamic flow control, the cost of execu-
tion will depend on the branch taken. However, one impor-
tant feature of graphics hardware is that computations are
evaluated in lock-step: entire blocks of the screen are exe-
cuted in parallel, each at a rate proportional to its most ex-
pensive pixel. Therefore, one cache miss within a large block
of pixels will penalize the execution time for that entire re-
gion. Fortunately, the spatial coherence in which pixels are
visible in sequential frames (Figure 1) largely mitigates this
effect, causing large contiguous regions of the screen to fol-
low the same control path.

An alternative to dynamic flow control, and one that
avoids penalties due to lock-step execution, is to rely on
early Z-culling [SIM05] which tests the depth of a pixel be-
fore evaluating the associated shader. During a first pass,
the cache lookup is performed and the hit shader is exe-
cuted if it succeeds. On a miss, the pixel is simply depth-
shifted to prime the Z-buffer. During the second pass, early
Z-culling guarantees that the miss shader will only be ex-
ecuted on those pixels, and only once per pixel. Unfortu-
nately, in current hardware the depth-shift operation prevents
the use of early Z-culling on the first pass. However, since
the hit shader is relatively cheap, this does not incur a sub-
stantial drop in performance. Most results in this paper were
generated using the early Z-culling approach in order to sup-
port the fine-grained, randomized refresh strategy described
in Section 5.2.

c© Association for Computing Machinery, Inc. 2007.

28

Nehab et al. / Reverse Reprojection Caching

Vertex shader

Compute cache-time vertex position

Output for automatic interpolation

Pixel shader

Divide by w to obtain cache coordinates

Fetch cached depth

Compare with expected values

Match?

Cache hit Cache miss

yes no

Figure 5: The vertex shader calculates the cache-time posi-

tion of each vertex and the pixel shader uses the interpolated

position to test the visibility of the current point in the previ-

ous frame-buffer.

3.5 Computational Overhead

Figure 5 shows a schematic description of the cache
lookup process. One modification to the vertex shader is
that the application must send it two sets of transforma-
tion parameters. Because many real-time applications often
reach the hardware limit for this type of storage any in-
crease could be problematic, although recent hardware revi-
sions provide substantially larger limits to comply with the
Direct3D R© 10 system [Bly06].

Additionally, our strategy requires transforming the ge-
ometry twice: once for the current and once for the previous
frame’s viewing parameters. However, if the rendering cost
is dominated by pixel processing, the hardware will certainly
welcome this trade-off between additional vertex load and a
substantial reduction in pixel load. In addition, since latest
GPUs are unified architectures, the system can benefit from
any significant reduction in pixel processing, even if pixel
processing is not the only factor in determining the render-
ing cost.

At the pixel-level, our caching strategy requires one addi-
tional division and two texture lookups. One of the lookups
is for the cached depths, and the other is for the payload
information for that pixel. There is also overhead associ-
ated with the dynamic control flow mechanism (Section 3.4).
Naturally, in order to justify caching, the computations being
replaced must be more expensive than the added overhead.

With regard to off-screen buffer management, caching a
single calculation at each pixel requires one additional depth
and color buffer equal in size to the viewport. Caching mul-
tiple values can be done by storing entries in different color
channels or within multiple buffers (for many applications, a
single unused alpha channel might suffice) for which avail-

able graphics hardware supports up to eight concurrent ren-
dering targets [Bly06].

4 Determining what to cache

Although reusing expensive shading calculations can reduce
the latency of generating a single frame, this introduces er-
ror into the shading proportional to the calculation’s rate of
change between frames. For example, caching the final color
of a highly polished object would not capture the shifting
specular highlights as the camera and lighting change.

When selecting a value to cache, the programmer should
seek to maximize the ratio of its associated computational
effort (e.g., number of machine instructions and texture
fetches) relative to the magnitude of its derivative between
frames. Although we leave the final decision of what to
cache to the programmer, we have identified several cate-
gories of shading calculations that meet these criteria:
• Shading models that incorporate an expensive calculation

which exhibits weak directional dependence (e.g., a pro-
cedurally generated diffuse albedo);
• Multi-pass rendering effects that combine several images

from nearby views (e.g., motion blur and depth of field);
• Effects that require sampling a function that is slowly

varying at each pixel (e.g., jittered super-sampling shadow
maps).

Interactive shading techniques that incorporate indirect (or
global) lighting effects often fall in the first category. In-
deed, a scene’s global shading component typically exhibits
low-frequency directional dependence [NKGR06], but sim-
ulating these effects can be computationally intensive. The
simplest example is the diffuse component in local lighting
models which is entirely independent of the viewing angle
and (ignoring the cosine fall-off) the direction of incident
lighting. In cases where this is modeled as a complex proce-
dure [Per85], reusing this value across multiple frames will
improve the rendering performance without affecting the ac-
curacy of the shading (Figure 6). Other examples include
methods that precompute the global transfer of light within
a scene for interactive display [SKS02]. These require ex-
pensive local shading calculations that often result in values
with low-frequency directional dependence. In Section 7, we
apply our technique to accelerate a method for rendering
the single-scattering component of translucent objects under
complex illumination [WTL05].

Multi-pass effects that combine several images rendered
from nearby views can also be accelerated by caching ex-
pensive calculations performed during the first pass which
are then reused in subsequent passes. Because the camera
motion between passes is known and fixed, the error in-
troduced with our approach is bounded. Furthermore, the
proximity of the combined views relaxes the requirement
that the cached calculation exhibit limited directional depen-
dence. We present results for motion blur, depth-of-field, and
stereoscopic effects in Section 7.

Our caching infrastructure also supports amortizing the
cost of stochastically sampling a function over multiple

c© Association for Computing Machinery, Inc. 2007.

29

Nehab et al. / Reverse Reprojection Caching

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Comparison of refresh policies. (a and e) One frame from an interactive sequence of the dragon model shaded with a

Perlin noise diffuse layer and a specular layer as the user adjusts the position of the camera and a point light source (the same

image is reproduced for side-by-side comparisons). (b) Result of caching the final pixel color using four tiled refresh regions.

(c) Coherence map showing which pixels are recomputed (red) and which are retrieved from the cache (green). (d) False-color

visualization of the shading error at each pixel. Note that the error is zero at pixels inside the tile that is being refreshed. (f,g,h)

Result of using randomly distributed refresh regions for the same scene along with associated coherence maps showing the

distribution of cache hits and the shading error. Both policies refresh entries once every four frames and provide performance

gains of nearly 100% (i.e., 35fps for conventional rendering vs. 60fps and 67fps for tile-based and random, respectively).

frames (Section 6). This is best suited for sampling func-
tions that are stationary (or slowly varying) at each pixel. In
Section 7.3, we describe how to improve the performance of
a popular technique for rendering antialiased shadow edges
from shadow maps.

5 Refreshing cached values

Scene motion, varying surface parameters and repeated re-
sampling will eventually degrade the accuracy of cached en-
tries, and they must be periodically refreshed. We can con-
trol the shading error introduced by reusing a calculation if
we set its refresh rate proportional to its rate of change be-
tween frames. Of course, predicting its change a priori is
not always possible as it might depend on scene motion due
to unknown user input. We instead rely on the programmer
to select values according to the guidelines in Section 4 and
manually set an appropriate refresh rate.

We can guarantee the entire cache is refreshed at least
once every n frames by updating a different region of size
1/n at each frame. This distributes the computational over-
head evenly in time and results in smoother animations. We
compare two strategies for partitioning the screen into re-
fresh regions.

5.1 Tiled refresh regions

We partition the screen into a grid of n non-overlapping tiles
and maintain a global clock t that is incremented at each
frame, and pass it to the pixel shader as a uniform attribute.
As each pixel is generated, the pixel shader adds its tile in-

dex i to the clock, triggering a refresh (i.e., executing the
miss shader even on a cache hit) on the condition:

(t + i) mod n = 0. (1)

This has the effect of refreshing each tile in turn. Figure 6 an-
alyzes the effect of this refresh strategy on a simple shader
that combines a Perlin noise diffuse layer with a Blinn-
Phong specular layer. As the user interactively adjusts the
camera and point light source, we cache the final color and
refresh its value once every four frames. Because accessing
the cache is considerably less expensive than performing this
calculation, we double the performance at negligible error.

5.2 Randomly distributed refresh regions

We have also experimented with refresh regions that form
a randomly distributed pattern across the entire screen (see
Figure 6). We have found these patterns produce less per-
ceptually objectionable artifacts, exchanging sharp discon-
tinuities at tile boundaries for high-frequency noise that is
evenly distributed across the image. However, this strategy
can degrade performance if naively implemented in modern
graphics hardware that executes neighboring pixels in lock-
step (Section 3.4). In these cases, it is important to use early
Z-culling to provide flow control which allows updating ran-
domly distributed regions as small as 2×2 pixels.

These refresh patterns can be implemented by precomput-
ing and storing a randomly distributed integral offset with
each pixel. We generate these so that 2×2 regions have

c© Association for Computing Machinery, Inc. 2007.

30

Nehab et al. / Reverse Reprojection Caching

the same offset (see Figure 6). During rendering, the pixel
shader accesses its offset d according to its screen position
and adds this value to the global clock t, refreshing on the
condition:

(t +d) mod n = 0. (2)

5.3 Implicit refresh

Many shaders that benefit from our technique do not require
explicitly refreshing the cache. Effects computed in multiple
rendering passes can reap the benefits of caching by reusing
values only between the passes within a single frame. The
cache is therefore completely refreshed in the first pass of
the following frame, avoiding any overhead required for the
policies described above. The same is true of our method
for amortized sampling (Section 6). In this case, values are
quickly and smoothly attenuated with the accumulation of
newer samples.

6 Amortized sampling

Many quantities in graphics result from a stochastic process
that combines a number of randomly chosen samples of a
function [DW85, Coo86]. Interactive applications are lim-
ited by the maximum number of samples their computational
budget can afford. Our caching infrastructure allows amor-
tizing the cost of sampling a function over multiple frames,
thereby improving the quality of these estimates at compa-
rable frame rates. As discussed in Section 4, this method is
best suited for sampling functions at each pixel that are sta-
tionary or slow-varying.

Our goal is to compute
Z

Ω
f (x)dµ(x), (3)

where f (x) is the function of interest and Ω is the domain of
integration (e.g., the shadow coverage within a singe pixel
as in Section 7.3). Monte Carlo techniques [RC04] approx-
imate Equation 3 as the weighted sum of n samples of f (x)
chosen according to a probability density p(x):

Fn =
1
n

n

∑
i=1

f (xi)

p(xi)
. (4)

The variance of this approximation, which measures its qual-
ity, is inversely proportional to the number of samples and
directly proportional to the quality of the distribution p(x):

Var[Fn] =
1
n2 Var

[

f (x)

p(x)

]

. (5)

At each frame, we may replace the cached entry ct with
a weighted combination of its current value and a new sam-
ple f (xt), weighted by its probability:

ct+1← λct +(1−λ)
f (xt)

p(xt)
, where λ ∈ [0,1). (6)

It can be easily shown that ct is an unbiased estimator for

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 20

 40

 60

 80

 100

R
a
ti
o

F
ra

m
e
s

λ

Variance
Total fall-off

Figure 7: When performing amortized super-sampling with

a recursive filter, there is a trade-off between the amount by

which the variance is reduced (the variance curve), and the

number of frames that contribute to the current estimate (the

total fall-off curve). This trade-off is controlled by the pa-

rameter λ.

Equation 3, with variance given by:

(1−λ)

(1+λ)
Var

[

f (x)

p(x)

]

. (7)

Note that the relative contribution of any sample to the
current estimate falls off exponentially, with a time constant
equal to τ = −1/ lnλ. The value of λ therefore controls the
trade-off between variance in the estimator and responsive-
ness to changes in the scene (i.e., changes to f (x)). Fig-
ure 7 quantifies this relationship where the total fall-off is
the time, measured in frames, until a sample is scaled by
1/256 (i.e., completely lost in 8-bits of precision). For exam-
ple, choosing a value of λ = 3/5 reduces the variance to 1/4
the original (Equation 7) and effectively combines samples
from the previous 10 frames (also refer to Figures 11b and
11d). Conversely, reducing the variance by a factor of 1/8
requires setting λ = 7/9, and increases the total fall-off to
22 frames. In practice, we determine λ empirically.

7 Results

We have used our caching strategy to accelerate several com-
mon interactive rendering techniques. These were selected
according to the guidelines in Section 4 and include a shad-
ing model for translucent objects based on precomputed
light transport, several common effects computed in multiple
rendering passes, and a technique for rendering antialiased
shadow map boundaries.

Our comparisons to conventional rendering methods fo-
cus on the trade-off between quality and performance. The
trends we report would be similar for applications that ex-
hibit a comparable balance between pixel shading and ge-
ometry processing complexity. Our results were generated
using a P4 3.2GHz with an ATI X800 graphics card.

c© Association for Computing Machinery, Inc. 2007.

31

Nehab et al. / Reverse Reprojection Caching

7.1 Shading model for translucent materials

We used our method to accelerate a technique, based on
precomputed light transport [SKS02], for interactively ren-
dering translucent objects under complex all-frequency dis-
tant illumination [WTL05]. Their model considers the com-
plete Bidirectional Surface Scattering Reflectance Distribu-
tion Function (BSSRDF) proposed by [JMLH01], which in-
cludes both single and diffuse multiple scattering. The multi-
ple scattering term is independent of view direction and can
therefore be captured with a set of per-vertex transfer vec-
tors that are precomputed and compressed using non-linear
wavelet approximation [NRH03]. The dot product of these
vectors and the environment lighting represented in the same
wavelet basis are computed on the CPU and become vertex
attributes T̃d .

They use an approximation for the single scattering
term [JB02] that allows decomposing an arbitrary phase
function into the sum of K terms, each the product of two
functions that depend only on the local light ωi and view
direction ωo, respectively. They precompute K additional
per-vertex colors T̃k that capture the product of the envi-
ronment lighting and these light-dependent terms. The view-
dependent terms hk are stored in texture maps and evaluated
at the local refracted view direction (hk(ω

′
o)) during render-

ing, resulting in the complete shading model†:

Lo(xo,ωo) = T̃d(xo)+∑
k

hk(ω
′
o)T̃k(xo). (8)

For optically dense materials, the outgoing radiance Lo

exhibits very low-frequency directional dependence. How-
ever, evaluating Equation 8 requires K texture fetches and
can be expensive for accurate decompositions. Therefore,
reusing this calculation across multiple frames reduces the
cost of generating a single frame at the cost of only marginal
shading errors.

Figure 8 compares the performance of the original
shader‡ to the result of applying our caching strategy to
reuse the result of Equation 8 at each pixel across consecu-
tive frames. We do not explicitly refresh the cache, but only
recompute at cache misses (see the cutout in Figure 8(a)). In
the end, we are replacing 4 texture fetches with two (one for
resolving cache hits and one for retrieving the actual pay-
load) plus the computational overhead of maintaining the
cache. For this scene we observed a 30% improvement in
the frame rate. We expect to achieve even better results for
more complex precomputed radiance transfer techniques.

† For clarity, we omit the Fresnel term and simple surface scattering
term used in [WTL05].
‡ We used a Henyey-Greenstein phase function with g = −0.25,
K = 4.

Translucent shader

(a) Translucent (b) Caching SS (c) Shading Error
Shader (30% faster)

Figure 8: A translucent shader based on PRT [WTL05] ac-

celerated with our caching strategy. (a) One frame from a

sequence in which the user adjusts the position of the bird

model under environment lighting. (b) Result of caching and

reusing the single-scattering shading calculation (note the

cache is never explicitly refreshed as seen in the coherence

map in (a,cutout)).

7.2 Multi-pass rendering effects

Anaglyph stereo images encode a binocular pair of views
of a scene in separate color channels and can be generated in
two rendering passes (see [Dub01] for a good review). The
proximity of these views allows us to reuse shading informa-
tion computed for one view at mutually visible points in the
opposing view. Although prior work has used reprojection
to accelerate this technique, it was applied in the context of
ray-tracing [AH93] and head-tracked displays [MB95].

Figure 9a demonstrates the effect of reusing the final color
of a shading model with a Perlin noise function that requires
512 instructions per pixel (expensive, but not unreasonable).
As shown in Figure 9b, the comparison to ground truth re-
veals noticeable shading errors around specular highlights.
In Figure 9c we cache and reuse only the expensive noise

Stereoscopic rendering

(a) final color (b) error

(enhanced)

(c) albedo only

Figure 9: Rendering stereoscopic images using our caching

method to share values at mutually visible points. Caching

(a) the final color leads to (b) visual errors near specular

highlights. These errors can be eliminated by (c) caching

only the surface albedo and recomputing the specular con-

tribution at each frame.

c© Association for Computing Machinery, Inc. 2007.

32

Nehab et al. / Reverse Reprojection Caching

Motion blur

60fps brute-force 60fps cached

30fps brute-force

30fps cached

Depth of field

45fps brute-force 45fps cached

20fps brute-force

20fps cached

Figure 10: Equal time/quality comparisons between brute-

forced methods for rendering motion blur and depth of field

effects and techniques extended to use our caching method.

Left: At high frame rates, brute-force methods may under-

sample camera locations and lead to unconvincing results.

Middle: Our caching technique lowers the cost of a single

pass, allowing the accumulation of more samples and thus

smoother effects at comparable frame rates. Right: Results

obtained with cache-based methods at equal frame rates.

calculation and recompute the specular contribution anew
during each pass. This example underscores the importance
of selecting values to cache that change gradually between
frames.

Brute-force stereographic rendering allows 28fps on our
system. Caching only the diffuse component improves the
frame rate to 39fps and caching the final color results in
44fps. Our method provides a 57% frame rate increase, with
negligible loss in visual quality.

Motion blur and depth of field effects can be simu-
lated by combining several images of a scene rendered at
slightly different points in time or from nearby viewing an-
gles [HA90]. Their strong spatio-temporal coherence allows
reusing expensive shading calculations computed in the first
pass during subsequent passes–an idea explored by [CW93]
and [HDMS03] in the context of image-based rendering and
ray-tracing animations, respectively. Furthermore, averaging
together multiple images tends to blur shading errors and ex-
tends the use of our technique to values with stronger view-
dependent effects.

Figure 10 compares brute-force techniques for rendering
motion blur and depth of field effects to results obtained with
caching. The model shown has 2.5k triangles and the same
shading as Figure 9. Our technique allows rendering this

Shadow mapping

(a) 1 tap,

65fps

(b) 4 taps,

40fps

(c) 16 taps,

26fps

(d) 4 taps

cached, 37fps

Figure 11: Our caching strategy can be used to super-

sample shadow-map tests. As seen in this close-up of the

Parthenon model (a) the limited resolution of the shadow

map results in aliasing artifacts along shadow boundaries.

(b) Percentage Closest Filtering (PCF) exchanges aliasing

for high-frequency noise by averaging the results of several

shadow tests. (c) Increasing the number of samples further

attenuates the noise, but can become too expensive for in-

teractive applications. (d) Our approach allows amortizing

the cost of sampling over several frames to provide improved

image quality at higher frame rates.

scene approximately twice as fast at equal quality or, con-
versely, combining twice the number of samples at an equal
frame rate.

7.3 Antialiased shadow map boundaries

Shadow maps [Wil78] have become an indispensable tool
for displaying shadows at interactive rates. The scene is first
rendered from the center of projection of each light source
and the contents of the Z-buffer are stored in textures called
shadow maps. As the scene is rendered from the observer’s
point of view, each pixel tests its location within each map
and accumulates the contribution of visible sources.

Because the sampling pattern of pixels at the camera are
different from the light sources, this simple technique is of-
ten plagued by aliasing problems (Figure 11a). One solu-
tion is to increase the effective resolution of the shadow
map [FFBG01, SD02]. Alternatively, Reeves et al. [RSC87]
introduced Percentage Closer Filtering (PCF) as a way to
reduce these artifacts by approximating partial shadow cov-
erage with the average over a number of stochastic samples
within each pixel (see Figure 11b). In our experiments, PCF
typically requires as few as 16 samples to resolve acceptable
shadow boundaries (Figure 11c).

Our amortized sampling method described in Section 6
is well suited to optimize PCF. Figure 11d shows the result
of generating 4 samples at each frame by randomly rotating
a fixed sampling pattern and recursively accumulating these
samples in the cache using a weighting factor of λ = 3/5.
This reduces the variance of our estimator by a factor of 1/4
(Equation 7), providing images of comparable quality to the
original method using 16 samples per frame (compare Fig-
ures 11c and 11d).

c© Association for Computing Machinery, Inc. 2007.

33

Nehab et al. / Reverse Reprojection Caching

8 Conclusions

We have introduced a simple technique for caching and
reusing expensive shading calculations that can improve the
performance and quality of many common real-time render-
ing tasks. Based on reverse reprojection, our method allows
consecutive frames to efficiently share shading information,
avoids maintaining complex data structures and limits the
traffic between the CPU and GPU. We have also provided
a set of guidelines for selecting calculations appropriate for
reuse and measured the benefit of our method in several real-
world applications.

Limitations: Our method is appropriate only for applica-
tions with significantly larger per-pixel shading costs than
geometry processing costs. It is also important to reuse
calculations that exhibit low-frequency light- and view-
dependent effects in order to avoid noticeable errors in the
shading. Section 4 provides a set of guidelines for identify-
ing appropriate applications.

Future work: We are interested in exploring alternative
parameterizations of cached values. Currently we store en-
tries over visible surfaces, but parameterizations designed to
expose the symmetry of local reflectance models [Rus98]
might allow more aggressive caching of highly directionally-
dependent scenes.

Another area of future work involves using our technique
to guide automatic per-pixel selection of level-of-detail. Be-
cause a side-effect of our technique is a dense and ex-
act motion field, we can estimate the speed of objects and
use this information to dynamically select an appropriate
level within a set of automatically or manually generated
shaders [OKS03, Pel05].

Acknowledgements

The authors wish to thank Rui Wang and David Luebke for
generously sharing their subsurface scattering code and the
many reviewers for their helpful comments.

References

[AH93] ADELSON S. J., HODGES L. F.: Stereoscopic
ray-tracing. The Visual Computer 10, 3 (1993), 127–144.

[AH95] ADELSON S. J., HODGES L. F.: Generating exact
ray-traced animation frames by reprojection. IEEE Com-

puter Graphics and Applications 15, 3 (1995), 43–52.

[AS06] AKELEY K., SU J.: Minimum triangle separation
for correct z-buffer occlusion. In Proc. of the ACM SIG-

GRAPH/EUROGRAPHICS Workshop on Graphics Hard-

ware (2006), pp. 27–30.

[Bad88] BADT JR. S.: Two algorithms for taking advan-
tage of temporal coherence in ray tracing. The Visual

Computer 4, 3 (1988), 123–132.

[BDT99] BALA K., DORSEY J., TELLER S.: Radiance in-
terpolants for accelerated bounded-error ray tracing. ACM

Transactions on Graphics 18, 3 (1999), 213–256.

[BFMZ94] BISHOP G., FUCHS H., MCMILLAN L., ZA-

GIER E. J. S.: Frameless rendering: Double buffering
considered harmful. In Proc. of ACM SIGGRAPH 94

(1994), ACM Press/ACM SIGGRAPH, pp. 175–176.

[Bly06] BLYTHE D.: The Direct3D R© 10 system.
ACM Transactions on Graphics (Proc. of ACM SIG-

GRAPH 2006) 25, 3 (2006), 724–734.

[CCC87] COOK R. L., CARPENTER L., CATMULL E.:
The REYES image rendering architecture. Computer

Graphics (Proc. of ACM SIGGRAPH 87) 21, 4 (1987),
95–102.

[Coo86] COOK R. L.: Stochastic sampling in computer
graphics. ACM Transactions on Graphics 5, 1 (1986),
51–72.

[CW93] CHEN S. E., WILLIAMS L.: View interpolation
for image synthesis. In Proc. of ACM SIGGRAPH 93

(1993), ACM Press/ACM SIGGRAPH, pp. 279–288.

[Dub01] DUBOIS E.: A projection method to generate
anaglyph stereo images. In ICASSP (2001), vol. 3, IEEE
Computer Society Press, pp. 1661–1664.

[DW85] DIPPÉ M. A. Z., WOLD E. H.: Antialiasing
through stochastic sampling. Computer Graphics (Proc.

of ACM SIGGRAPH 85) 19, 3 (1985), 69–78.

[DWS∗88] DEERING M., WINNER S., SCHEDIWY B.,
DUFFY C., HUNT N.: The triangle processor and normal
vector shader: a VLSI system for high performance graph-
ics. In Computer Graphics (Proc. of ACM SIGGRAPH 88)

(1988), ACM Press/ACM SIGGRAPH, pp. 21–30.

[DWWL05] DAYAL A., WOOLLEY C., WATSON B.,
LUEBKE D.: Adaptive frameless rendering. In Eu-

rographics Symposium on Rendering (2005), Rendering
Techniques, Springer-Verlag, pp. 265–275.

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K.,
GREENBERG D. P.: Adaptive shadow maps. In Proc.

of ACM SIGGRAPH 2001 (2001), ACM Press/ACM SIG-
GRAPH, pp. 387–390.

[HA90] HAEBERLI P., AKELEY K.: The accumulation
buffer: hardware support for high-quality rendering. Com-

puter Graphics (Proc. of ACM SIGGRAPH 90) 24, 4
(1990), 309–318.

[HDMS03] HAVRAN V., DAMEZ C., MYSZKOWSKI K.,
SEIDEL H.-P.: An efficient spatio-temporal architecture
for animation rendering. In Eurographics Symposium

on Rendering (2003), Rendering Techniques, Springer-
Verlag, pp. 106–117.

[HM91] HECKBERT P., MORETON H.: Interpolation for
polygon texture mapping and shading. In State of the

Art in Computer Grpahics: Visualization and Modeling,
Rogers D., Earnshaw R., (Eds.). Springer-Verlag, 1991,
pp. 101–111.

[JB02] JENSEN H. W., BUHLER J.: A rapid hierarchical
rendering technique for translucent materials. In Proc. of

ACM SIGGRAPH 2002 (2002), ACM Press.

c© Association for Computing Machinery, Inc. 2007.

34

Nehab et al. / Reverse Reprojection Caching

[JMLH01] JENSEN H. W., MARSCHNER S. R., LEVOY

M., HANRAHAN P.: A practical model for subsurface
light transport. In Proc. of ACM SIGGRAPH 2001 (2001),
ACM Press.

[MB95] MCMILLAN L., BISHOP G.: Head-tracked
stereoscopic display using image warping. In SPIE

(1995), Fisher S., Merritt J., Bolas B., (Eds.), vol. 2049,
pp. 21–30.

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.:
Post-rendering 3D warping. In Symposium on Interactive

3D Graphics (Apr. 1997), pp. 7–16.

[MS95] MACIEL P. W. C., SHIRLEY P.: Visual navigation
of large environments using textured clusters. In SI3D’95

(1995), ACM Press, pp. 95–102.

[NBS06] NEHAB D., BARCZAK J., SANDER P. V.: Trian-
gle order optimization for graphics hardware computation
culling. In Proceedings of the ACM SIGGRAPH Sym-

posium on Interactive 3D Graphics and Games (2006),
pp. 207–211.

[NKGR06] NAYAR S. K., KRISHNAN G., GROSSBERG

M. D., RASKAR R.: Fast separation of direct and global
components of a scene using high frequency illumina-
tion. ACM Transactions on Graphics (Proc. of ACM SIG-

GRAPH 2006) 25, 3 (2006), 935–944.

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.:
All-frequency shadows using non-linear wavelet light-
ing approximation. In Proc. of ACM SIGGRAPH 2003

(2003), ACM Press.

[OKS03] OLANO M., KUEHNE B., SIMMONS M.: Au-
tomatic shader level of detail. In Proc. of the ACM SIG-

GRAPH/EUROGRAPHICS Workshop on Graphics Hard-

ware (2003), Eurographics Association, pp. 7–14.

[Pel05] PELLACINI F.: User-configurable automatic
shader simplification. ACM Transactions on Graphics

(Proc. of ACM SIGGRAPH 2005) 24, 3 (2005), 445–452.

[Per85] PERLIN K.: An image synthesizer. In Proc.

of ACM SIGGRAPH 85 (1985), ACM Press/ACM SIG-
GRAPH, pp. 287–296.

[RC04] ROBERT C. P., CASELLA G.: Monte Carlo Sta-

tistical Methods. Springer, 2004.

[RH94] ROHLF J., HELMAN J.: Iris performer: a high per-
formance multiprocessing toolkit for real-time 3d graph-
ics. In Proc. of ACM SIGGRAPH 94 (1994), ACM
Press/ACM SIGGRAPH, pp. 381–394.

[RP94] REGAN M., POSE R.: Priority rendering with a
virtual reality address recalculation pipeline. In Proc.

of ACM SIGGRAPH 94 (1994), ACM Press/ACM SIG-
GRAPH, pp. 155–162.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.:
Rendering antialiased shadows with depth maps. Com-

puter Graphics (Proc. of ACM SIGGRAPH 87) 21, 4
(1987), 283–291.

[Rus98] RUSINKIEWICZ S.: A new change of variables
for efficient BRDF representation. In Eurographics Work-

shop on Rendering (1998).

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective
shadow maps. ACM Transactions on Graphics (Proc. of

ACM SIGGRAPH 2002) 21, 3 (2002), 557–563.

[SHSS00] STAMMINGER M., HABER J., SCHIRMACHER

H., SEIDEL H.-P.: Walkthroughs with corrective tex-
turing. In Eurographics Workshop on Rendering (2000),
Rendering Techniques, Springer-Verlag, pp. 377–388.

[SIM05] SANDER P. V., ISIDORO J. R., MITCHELL J. L.:
Computation culling with explicit early-z and dynamic
flow control. In GPU Shading and Rendering. ACM SIG-
GRAPH Course 37 Notes, 2005, ch. 10.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precom-
puted radiance transfer for real-time rendering in dy-
namic, low-frequency lighting environments. In Proc. of

ACM SIGGRAPH 2002 (2002), ACM Press.

[SS00] SIMMONS M., SÉQUIN C. H.: Tapestry: A dy-
namic mesh-based display representation for interactive
rendering. In Eurographics Workshop on Rendering

(2000), Rendering Techniques, Springer-Verlag, pp. 329–
340.

[TK96] TORBORG J., KAJIYA J. T.: Talisman: commod-
ity realtime 3D graphics for the PC. In Proc. of ACM

SIGGRAPH 96 (1996), ACM Press/ACM SIGGRAPH,
pp. 353–363.

[TPWG02] TOLE P., PELLACINI F., WALTER B.,
GREENBERG D. P.: Interactive global illumination in dy-
namic scenes. ACM Transactions on Graphics (Proc. of

ACM SIGGRAPH 2002) 21, 3 (2002), 537–546.

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: In-
teractive rendering using the render cache. In Eurograph-

ics Workshop on Rendering (1999), Rendering Tech-
niques, Springer-Verlag, pp. 19–30.

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. Computer Graphics (Proc. of ACM SIG-

GRAPH 78) 12, 3 (1978), 270–274.

[WS99] WARD G., SIMMONS M.: The holodeck ray
cache: an interactive rendering system for global illumi-
nation in nondiffuse environments. ACM Transactions on

Graphics 18, 4 (1999), 361–368.

[WTL05] WANG R., TRAN J., LUEBKE D.: All-
frequency interactive relighting of translucent objects
with single and multiple scattering. ACM Transactions on

Graphics (Proc. of ACM SIGGRAPH 2005) 24, 3 (2005),
1050–1053.

[ZWL05] ZHU T., WANG R., LUEBKE D.: A GPU ac-
celerated render cache. In Pacific Graphics (short paper)

(2005).

c© Association for Computing Machinery, Inc. 2007.

35

36

