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Abstract

Recent progress in acquisition technology has increased the availability and quality of measured appearance data.
Although representations based on dimensionality reduction provide the greatest fidelity to measured data, they
require assembling a high-resolution and regularly sampled matrix from sparse and non-uniformly scattered input.
Constructing and processing this immense matrix becomes a significant computational bottleneck. We describe a
technique for performing basis decomposition directly from scattered measurements. Our approach is flexible in
how the basis is represented and can accommodate any number of linear constraints on the factorization. Because
its time- and space-complexity is proportional to the number of input measurements and the size of the output, we
are able to decompose multi-gigabyte datasets faster and at lower error rates than currently available techniques.
We evaluate our approach by representing measured spatially-varying reflectance within a reduced linear basis
defined over radial basis functions and a database of measured BRDFs.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [ Digitization and Image Capture]: Reflectance

1. Introduction

Recent advances in digital cameras, lighting technology,
and automated acquisition methods have increased the ac-
cessibility and quality of measured appearance data. These
datasets are typically far too large to be used directly, so
recent research has explored compact, accurate, and ed-
itable representations. Those based on basis function decom-
position typically provide the greatest accuracy and have
become practical alternatives to conventional analytic re-
flectance models in a variety of contexts including real-time
rendering systems [MAA01, MMS∗04], global illumination
simulations [LRR04], and material design [LBAD∗06].

One key limitation of these techniques is their requirement
that the measured data be organized into a matrix. Only then
can the matrix be factored, effectively projecting the input
onto a reduced linear basis. However, the high dimensional-
ity of light scattering functions makes it generally imprac-
tical to obtain the dense set of measurements necessary for
matrix generation. Even the multi-gigabyte datasets returned
by current acquisition systems [GLL∗04,LKG∗03,NDM05]
contain only sparse and scattered measurements. To popu-
late the matrix from such data, an expensive reconstruction
effort is required, and the efficiency of the subsequent fac-
torization is hindered by its massive size.

This paper introduces an efficient and general method for
performing linear basis decomposition directly from a set of
scattered and sparse measurements. Our key insight is that
the estimated linear basis should itself be defined with re-
spect to a fixed secondary basis. The choice of secondary ba-
sis is guided by prior work in accurate and efficient represen-
tations of measured reflectance (e.g., wavelets [MPBM03b],
radial basis functions [ZERB05], a database of measured
BRDFs [MPBM03a]). We introduce an iterative algorithm
that solves a series of convex quadratic programming prob-
lems to perform factorization with respect to a secondary
basis and scattered input. The complexity of the resulting
algorithm is proportional to the number of input samples
and the size of the output, a significant improvement over
currently available techniques. Furthermore, our formula-
tion can accommodate hard constraints on the decomposi-
tion such as non-negativity and energy conservation, which
are particularly important in the context of material represen-
tation [CBCG02, LRR04, LBAD∗06]. We explore the use of
radial basis functions and a BRDF database [MPBM03a] in
this framework and compare the efficiency of our approach
to currently available methods using two datasets of mea-
sured spatially-varying reflectance.
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2. Background and Prior Work

Although our work could be used to represent a variety
of light scattering functions, this paper focuses on hetero-
geneous opaque reflectance, which is characterized by the
6-D Spatially-Varying Bidirectional Reflectance Distribu-
tion Function (SVBRDF) [NRH77]: S(~x, ~ωi, ~ωo). The ap-
pearance of such materials may vary with 2-D spatial po-
sition along an object’s surface ~x, incoming light direction
~ωi, and reflected direction ~ωo (we will often abbreviate the
complete 4-D angular domain as~θ = (~ωi, ~ωo)).

Fitting Parametric Models: A common method for ap-
pearance representation is to fit analytic reflectance func-
tions to data [War92, LFTG97, McA02, GTHD03, LKG∗03,
GCHS05,NDM05,MWAM05]. Although they provide a pa-
rameterized and compact representation that is well-defined
over the entire domain, fitting these models to measured data
can result in significant error [NDM05, LBAD∗06]. Addi-
tionally, this approach relies on fragile non-linear optimiza-
tion which is often unstable in practice. Furthermore, these
methods are not appropriate for representing datasets with
widely varying reflectance properties or those that exhibit
global illumination or visibility effects typically described
by the Bidirectional Texture Function (BTF) [DvNK99,
MMS∗04].

Scattered Data Interpolation: Several interpolation strate-
gies have been used in the context of material representa-
tion. Most related to this paper is the work of Zickler et
al. [ZERB05, ZERB06] which uses radial basis functions
(RBFs) to recover a smooth approximation of an SVBRDF
from a sparse set of images. One key limitation of their
approach is that it assumes the angular component of sur-
face reflectance varies smoothly across the surface, whereas
our approach is designed to handle SVBRDFs that exhibit
complex high-frequency spatial blending between compo-
nent materials (Fig. 5 and Fig. 13).

Basis function decomposition: Numerous dimensionality-
reduction algorithms have been applied to the task of ma-
terial representation, including variants of principal com-
ponent analysis (PCA) [KM99, FKIS02, VT04], homomor-
phic factorization [MAA01], independent component analy-
sis (ICA) [TOS∗03], k-means clustering [LM01], and vari-
ants of non-negative matrix factorization (NMF) [CBCG02,
LRR04, PvBM∗06, LBAD∗06].

With the exception of homomorphic factorization [MAA01],
which represents the input as a single product and can-
not support linear combinations, these methods require tab-
ulating the data into a matrix of the same resolution as
the final representation. This matrix is typically several or-
ders of magnitude larger than the combined size of the in-
put and output [CBCG02, LBAD∗06] and becomes a sig-
nificant (and theoretically unnecessary) computational bot-
tleneck. For this reason, existing systems often consider
only a tiny subset of this matrix [LBAD∗06] or limit the

resolution of the output [DvNK99, MMS∗04]. This strat-
egy is particularly inefficient for handling measurements
of spatially-varying reflectance collected from curved sur-
faces [ZERB05, LKG∗01, GCHS05] and is one reason prior
work has exclusively used planar samples: to avoid signif-
icant interpolation of the data across a regularly sampled
grid [DvNK99,MMS∗04,LBAD∗06]. We alleviate the need
for this intermediate matrix through a more general and flex-
ible definition of the basis.

3. Overview

We consider decompositions of the SVBRDF into a sum of
products of 2- and 4-D functions

S(~x,~θ)≈
K

∑
k=1

Fk(~x)Gk(~θ), (1)

where the F(~x) can be interpreted as spatially-varying co-
ordinates (often called blending weights) within the K-
dimensional linear basis spanned by the G(~θ) (often called
the basis BRDFs). For most real-world materials, S can be
well approximated with a small K, enabling accurate and
compact representations.

A standard approach is to perform the decomposition in
Eq. 1 by computing a rank-K factorization of a matrix. Mea-
surements of S are assembled into a matrix Z so that spatial
variation is preserved across its rows and angular variation
across its columns (Fig. 1b). Alternatively, we can represent
Z as

Z ≈WH, (2)

where the K columns of W and the K rows of H contain
the discretely sampled blending weights and basis BRDFs,
respectively. The particular algorithm used to factor Z will
depend on the desired convergence properties, error guar-
antees, and any constraints placed on the elements of W
and H. Note that we assume K is known and fixed; esti-
mating this number automatically remains an open research
topic [TJBB04].

This standard approach has two key drawbacks that this
paper aims to address. First, because densely measuring S
along a regular angular grid is often impractical, each row
of Z must be interpolated in undersampled regions. This
is a time-consuming and difficult operation, particularly for
multi-dimensional functions and very sparse input like that
collected in [LKG∗03, ZERB05]. Second, the number of
columns in Z establishes the resolution of the 4-D basis
BRDFs (3-D for isotropic materials) and should be very
large to enable accurate decompositions. Together, the size
of Z becomes a significant computational bottleneck both in
terms of the effort required to interpolate scattered data over
such a large grid and the price of computing its subsequent
factorization.
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Figure 1: Our approach to SVBRDF factorization. (a) High dynamic range reflectance measurements from known geometry
sparsely populate (b) a matrix Z whose rows vary with spatial position and columns with angular configuration. We factor Z into
a product of (c) W, spatially distributed blending weights, and (d) H, another set of weights applied to (e) a secondary linear
basis. Here we visualize the secondary basis as several lit spheres using the material database from Matusik et al [MPBM03a].
Note that we do not explicitly construct the full Z matrix, instead operating on only the scattered input data.

To overcome these limitations, we employ a second level of
indirection and define the primary basis functions G with
respect to a secondary linear basis Ψ

S(~x,~θ)≈
K

∑
k=1

(
Fk(~x)

L

∑
l=1

λklΨl(~θ)

)
. (3)

This formulation offers several advantages:

• There are a number of bases (i.e., choice of Ψ) that of-
fer accurate and compact representations of measured re-
flectance (e.g., wavelets [MPBM03a], spherical harmon-
ics [KvDS96], and radial basis functions [ZERB05]).
Defining G with respect to the appropriate basis can sig-
nificantly reduce the number of free parameters in the de-
composition, which in turn reduces computation time and
memory requirements, and improves the stability of the
optimization in the face of very sparse and noisy input.

• This strategy avoids an explicit interpolation stage.

• It generalizes prior work: standard factorization algo-
rithms correspond to setting Ψ to the reconstruction ker-
nel used for interpolation (e.g., hat, box, or Gaussian) and
distributed according to the resolution of Z.

• The parameters F and λ can be estimated with a straight-
forward iterative algorithm based on solving a series
of convex Quadratic Programming (QP) problems (Sec-
tion 4.1). This also accommodates constraints on the
decomposition, such as non-negativity and energy con-
servation, that are important for material representa-
tion [LRR04, LBAD∗06].

Although the choice of Ψ greatly influences the quality of
the resulting approximation, we first present our basic algo-
rithm and examine the issues involved in selecting a suitable
secondary basis in Sec. 5.

4. Basis Decomposition for Scattered Data

Although we do not explicitly construct the matrix Z, it is
conceptually useful to think of it as an extremely sparse ma-
trix with M rows and Nm scattered entries in the mth row
(Fig. 1b). The matrix W is M×K and corresponds to the
blending weights we intend to estimate (i.e., discretely sam-
pled representations of Fk in Eq. 3), and the matrix H is
K× L and stores the weights Hkl = λkl that are applied to
Ψ in Eq. 3. The example shown in Fig. 1 uses a database of
measured BRDFs [MPBM03a] as a secondary basis.

Let~λk = (λk1, . . . ,λkL) denote the vector of weights that de-
fine Gk in Eq. 3. The value of Gk at an arbitrary location~θ is
thus equal to the inner product of~λk and a vector of the val-
ues of each Ψl evaluated at~θ. Similarly, the values of Gk at
a discrete set of N locations can be computed as the product
of a matrix A and this weight vector

(Gk(x1), . . . ,Gk(xN)) =~λkA, (4)

where Ai j = Ψi(x j) and is L×N, as desired. Next, consider
our approximation of a single row in Z. In the case of the
SVBRDF, zm will contain Nm scattered measurements of a
BRDF. We evaluate each Ψl at these scattered locations to
form Am as in Eq. 4, giving

zm ≈ wmHAm, (5)

where Hkl = λkl and wm is the mth row of W . Eq. 5 is the fun-
damental relationship that allows relating the parameters we
intend to estimate (wm and H) to the input. Fig. 4 provides
a didactic illustration of how Am is constructed for a simple
1-D example. We next describe our algorithm for computing
the W and H that best approximate Z.
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z m Am

Figure 2: A 1-D example of the vector zm and matrix Am in
Eq. 5. Scattered measurements of an unknown function form
the entries of zm. We assemble Am by evaluating each sec-
ondary basis function (in this example we use three shifted
Gaussians of equal width) at these measurement locations.

4.1. Factorization Algorithm

We separate Z into W and H using an iterative approach.
The initial values for W are arbitrary; we initialize them to
the result of a k-means clustering process. We then alternate
between updating H while holding W fixed and vice versa.
Our procedure for each step guarantees that the total error
cannot increase, so this process will eventually converge to
a local minimum.

4.1.1. Updating W

Our first step is to update the blending weights stored in W
for a fixed H and our current choice of Ψ. Let wm be the mth

row of W . We wish to minimize the difference between the
scattered measurements stored in zm and our approximation
which, from Eq. 5, is simply

dm = zm−wmHAm, (6)

with a squared difference of

dmdT
m = zmzT

m−2zmAT
mHT wT

m +wmHAmAT
mHT wT

m. (7)

Because we want to minimize this function, the constant
term zmzT

m can be omitted and the equation can be divided
by two, leading to the canonical form of a quadratic pro-
gramming (QP) problem in w with error

Ew =
1
2

wmQmwT
m + cmwT

m, (8)

where Qm = HAmAT
mHT and cm =−zmAT

mHT .

There are three important things to note about the opera-
tions involved in minimizing Eq. 8. First, Qm is positive-
semidefinite by construction, allowing the use of efficient
convex QP solvers; we have implemented a primal-dual
interior-point algorithm for this task [GW03] which is domi-
nated by the solution of an indefinite sparse linear system us-
ing the method in [DR82]. Second, this formulation allows
placing arbitrary linear equality and inequality constraints
on the values of w. Third, the contribution each row in W
makes to the overall error is independent of the other rows,
so they can be optimized separately or in small groups.

4.1.2. Updating H

In general, the optimization procedure for H is different from
W because its columns cannot be determined independently
as the Ψ may overlap. Although orthogonal bases and those
with compact support would allow partitioning the problem
into smaller parts, we leave these types of optimizations to
future work.

The error function to be minimized is obtained by consid-
ering a single row of the product WH as a function of the
values of H, and then summing this error across all rows.

By unrolling the entries in H into a single row vector h

h =
[
H11 · · · H1L · · · HK1 · · · HKL

]
, (9)

the error for the mth row of WH, (WH)m, becomes

E(WH)m
= hŴ T

m AmAT
mŴmhT −2zmAT

mŴmhT + zmzT
m, (10)

where Ŵm is a (L×KL) matrix such that ŴmhT = (wmH)T :

Ŵm =

wm1 wmK
. . . · · ·

. . .
wm1 wmK

 . (11)

Making use of the distributive property, the expression to
be minimized can once again be written as a canonical QP
problem

EH =
1
2

hQhT + chT , (12)

where Q = ∑
M
m=1 Ŵ T

m AmAT
mŴm and c = −∑

M
m=1 zmAT

mŴm.
Note that for a fixed W and a fixed H, ∑Ew = EH , as ex-
pected.

As before, we can compute the value of h that minimizes
Eq. 12 subject to linear equality and inequality constraints
using standard techniques.

4.1.3. Confidence Weighting

This basic algorithm can be extended to weight the contri-
bution each measurement makes to the total error accord-
ing to a scalar confidence value. This is useful for reduc-
ing the effect of less reliable data (e.g., measurements ob-
tained at grazing angles) or for minimizing a weighted Eu-
clidean metric (e.g., the cosine-weighted distance often used
for BRDFs).

Let bm be a vector of weights associated with the input row
zm. Then Bm is a diagonal matrix formed from these weights,
and we generalize Eq. 6 to define the weighted difference
vector

dm = zmBm−wmHAmBm. (13)

This results in the modified QP problem

E′
w =

1
2

wmQ′
mwT

m + c′mwT
m, (14)
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where Q′
m = HAmBmBmAT

mHT and c′m = −zmBmBmAT
mHT

(although not shown, E′
H can be derived similarly). In prac-

tice we fold these weights into the A matrices (A′ = AB) to
save additional memory and computation costs.

4.2. Error Metric

Following the recent work of Ngan et al. [NDM05] for fit-
ting analytic BRDF models to measured data, we will seek
decompositions that minimize a cosine-weighted L2 distance

E = ∑ [S(~x; ~ωi, ~ωo)cos(θi)− S̃(~x; ~ωi, ~ωo)cosθi]
2, (15)

where S̃ is the reconstructed SVBRDF and the sum is taken
over the entire set of scattered measurements. Because our
focus is on fitting very sparse and scattered angular measure-
ments, we omit the solid angle term present in [NDM05].
Lastly, we disregard measurements with incoming or outgo-
ing angles larger than 80 degrees. We can form a weighting
matrix B by evaluating cosθi at each scattered measurement
which causes our algorithm to minimize Eq. 15, as desired.

4.3. Constraints

The ability to place constraints such as non-negativity and
energy conservation on the resulting decomposition is im-
portant in many applications, including real-time render-
ing [MAA01], importance sampling for physically-based
rendering [LRR04], and material design [LBAD∗06]. Al-
though this paper does not attempt to analyze this design
space, focusing instead on the performance of our basic al-
gorithm, it does support these types of constraints. The key
difference between our algorithm and existing techniques is
that constraints on the primary basis must be expressed in
terms of the secondary basis. For example, if a collection of
measured BRDFs are used as the secondary basis and each
is guaranteed to be non-negative and conserve energy, we
can restrict their weights (λkl in Eq. 3) to be non-negative
and sum to a value less than or equal to 1, thereby guaran-
teeing the resulting primary basis is also physically plausi-
ble. We leave further investigation of handling constraints
in our framework as future work. However, we do enforce
non-negativity in the blending weights W in all of our exper-
iments to encourage more intuitive separations.

4.4. Complexity

The space complexity of our algorithm is dominated by the
Am matrices and is O(T L), where T is the total number of
measurements (T = ∑m Nm). Its time complexity is a func-
tion of the input size T , the size of the secondary basis L, and
the number of terms in the factorization K. Updating each
row of W requires sequentially solving M (K×K) QP prob-
lems, and updating H requires solving a single (KL×KL)

QP problem. The total run time depends on the number of it-
erations performed; we terminate the optimization once the
error changes by less than 0.1% between steps.

Because the size of real-world reflectance datasets typi-
cally exceeds the capacity of main memory, we must per-
form some subsampling of the input. We follow the strategy
in [LBAD∗06] which proceeds in two passes. First, we per-
form a complete factorization on a subset of the rows of Z to
form Z̃≈ W̃H (subsampling the columns is also possible). In
a second pass, we backproject each row in Z onto the basis
H with a single application of the steps in Sec. 4.1.1. We in-
vestigate the sensitivity of our algorithm to how aggressively
we subsample the input in Sec. 5 and Sec. 6.

5. Choice of Secondary Basis

Although our algorithm is mathematically independent of
the choice of secondary basis, an appropriate set of func-
tions will greatly improve is performance and stability. We
have analyzed two bases: radial basis functions (RBFs) and a
database of measured isotropic BRDFs [MPBM03a]. We se-
lected these as opposing points in this design space. On the
one hand, RBFs are designed to interpolate arbitrary smooth
functions, but may require a large number of centers and in-
put data to form accurate approximations. On the other hand,
a material database is a more restrictive basis, but it is meant
to represent real-world BRDFs and has a greater ability to
yield plausible estimates of the reflectance far away from
actual measurements.

5.1. Radial Basis Functions

Zickler et al. showed that a modest number of RBFs
can approximate measured reflectance data well [ZERB05]
(see [Pow92] for a thorough review of RBFs). Whereas their
work focused on interpolating a single SVBRDF under the
assumption that its angular component varies smoothly over
the surface, we are instead interested in using RBFs to ap-
proximate each of the K basis BRDFs which may be dis-
tributed in arbitrarily complex spatial patterns. Similarly to
their work, our approach may also be thought of as “sharing
reflectance information,” but only across regions with simi-
lar optical properties as determined by the estimated blend-
ing weights.

We define each basis BRDF as

Gk(~θ) = ck +
L

∑
l=1

λklΨl(‖~θ−~θl ‖), (16)

where ck is a constant term and Ψl are functions of radial
distance. The number of functions L required for accurate
approximations is heavily influenced by the parameteriza-
tion of the BRDF domain, the analytic form of Ψ, and the
center locations ~θl .
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Synthetic Input Images

w = 0.0 w = 0.3 w = 0.8

Figure 3: Reflectance samples captured in (top) several im-
ages of a sphere under varying point illumination (bottom)
reparameterized as in [ZERB05]. The sphere’s reflectance
is modeled as a Torrance-Sparrow BRDF [TS66] (σ = 0.007
and ks = 0.15) under distant point illumination from ten ran-
domly chosen directions. The bottom row shows the distribu-
tion of the reflectance samples contained in these images at
three slices of constant w. Note that the specular highlight is
aligned along the w-axis and the shape of the horizon causes
the irregular clipping near grazing angles.

Parameterization: We use the parameterization described
in [ZERB05] for representing isotropic BRDFs

(u,v,w) =
(

sinθh cos2φd ,sinθh sin2φd ,
2θd
π

)
, (17)

where θh, θd , and φd denote the elevation and azimuthal an-
gles in the half/difference frame introduced by [Rus98] (φh
may be ignored for isotropic BRDFs). Fig. 3 visualizes this
parameterization for a synthetic BRDF.

Choice of Radial Function: We have experimented with
a number of radial functions (e.g., linear, cubic, exponen-
tial) and found that a simple exponential Ψ(r) = exp(− r2

2σ2 )
works well for a wide range of materials (recall r is equal
to ‖ (u,v,w)− (ul ,vl ,wl)‖ in our case). As indicated by the
blue dots in the bottom row of Fig. 4, we place centers along
nine uniformly spaced slices of w (3 of 9 are shown) to form
a radial pattern in the (u,v) plane which is more dense near
(u,v) = (0,0) where specular highlights occur. Additionally,
we increase their overall density as w → 1 to better capture
the brightening and sharpening of the highlight near grazing
angles. In all, this pattern totals 381 centers plus a constant
and was used for all the RBF results shown in this paper.

Verification: We verified these design decisions using two
synthetic datasets meant to simulate the type of data ac-
quired in practice (we present results for measured data in
Sec. 6). We recovered a BRDF represented as RBFs from
the measurements in Fig. 3 by solving the corresponding QP
problem in Eq. 12 (this corresponds to estimating H for a
single-term factorization and fixed unit intensity blending
weights W ). We handle color by estimating a separate set

Reconstruction (RMS=0.014)

w = 0.0 w = 0.3 w = 0.8

Figure 4: A BRDF represented as a weighted combination of
RBFs estimated from the samples shown in Fig. 3. For com-
parisons, we show corresponding (top) spheres under point
illumination and (bottom) several slices within the Zickler
parameterization. Blue points mark the location of centers.

of RBF weights for each channel in the RGB colorspace.
Fig. 4 shows the resulting approximation as spheres rendered
under the same lighting conditions and for the same (u,v)
slices shown in Fig. 3. Aside from some slight ringing near
extreme grazing angles, the specular highlight and diffuse
color are accurately reproduced. We also report the RMS
error, taken as the square root of the normalized weighted
metric, in Eq. 15.

We performed additional verification using a synthetic
SVBRDF dataset consisting of the Torrance-Sparrow
BRDF from Figures 3 and 4 mixed with an Oren-Nayar
BRDF [ON94] (σ = 0.2) to form a checkerboard pattern
mapped to a sphere. Figure 5 shows two of the ten input
images and a 2-term factorization computed with our tech-
nique. We subsampled the input to consider only 4,096 of
the possible 200K valid pixels, or 2%, to perform the fac-
torization and then recovered a complete set of blending
weights during a backprojection phase. These are visual-
ized as grayscale images in Fig. 5 and clearly show the
checkerboard pattern and the basis BRDFs are visualized as
lit spheres. The decomposition converged after 6 iterations
or ∼3.5 minutes. Figure 6 compares the visual quality of
this factorization to two of the ten input images and at one
light position not included in the training set.

5.2. Material Database

We have also investigated using the MERL-MIT database of
isotropic BRDFs collected by Matusik et al. [MPBM03a] as
a secondary basis. We manually selected 55 of the highest
quality examples (from a total of 100) that span the range
of materials present in the collection and expanded each into
three separate functions, one for each color channel, for a
total of 165 different functions (i.e., L = 165 in Eq. 3).

Using a data-driven secondary basis has a number of advan-
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. . . ( (( (x + x

Input Images
(2 of 10) Two-Term Factorization

Figure 5: Illustration of a two-term factorization in which
the basis BRDFs are represented using RBFs. Left: two of
the ten synthetic input images, rendered with pbrt [PH04].
Right: each term consists of a set of blending weights, visual-
ized here as grayscale images, and a basis BRDF, visualized
as lit spheres.

tages. First, the size of the basis is relatively small so the
factorization converges quickly. Second, the quality of the
match is directly related to the quality and completeness of
the database. Third, each function has wide support over the
entire domain, allowing robust and reliable approximations
even for very sparse input.

We used the synthetic dataset shown in Fig. 5 to verify the
accuracy of this approach. Fig. 7 charts the RMS error in a
two-term factorization as a function of the size of the subset
of Z used to compute the decomposition (recall that we pro-
cess only a subset of the input and recover complete blend-
ing weights during a backprojection phase as described in
Sec. 4.4). Compared to RBFs, the error in the factorization
is lower at very small input sizes, but flattens out once ad-
ditional samples fail to change the choice of the best-fitting
material weights. In contrast, the flexibility afforded by the
larger number of RBFs allows a steadier reduction in error,
but its accuracy relies on a larger number of input samples.
Fig. 6 shows images rendered using the factorizations gen-
erated from a randomly chosen subset of 4,096 locations.

Figure 8 shows blending weights and basis BRDFs estimated
from a measured dataset of spatially-varying reflectance (to
save space only 3 of 5 terms are shown, the additional terms
capture the color in the eyes and more subtle variation in the
reflectance along the body). Although Sec. 6 provides further
analysis of this dataset, we present it here to help illustrate
the use of a material database in our framework. Note that
each basis BRDF is itself represented as a weighted combi-
nation of the elements in the MERL-MIT BRDF database.
The weights used to recover the basis BRDF shown in the
middle column of Fig. 8 are visualized in Fig. 9.

RBF MERL-MIT
Original (RMS=0.011) (RMS=0.044)

Figure 6: Comparison of factorizations generated using two
different secondary bases for a synthetic SVBRDF dataset.
Left: ground truth images (only the top two were included in
the training set). Middle: reconstructions at the same light
positions using RBFs as the secondary basis. Right: recon-
structions using a BRDF database as the secondary basis.
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Figure 7: Reconstruction error as a function of input size for
two secondary bases.

6. Comparison to Prior Work

We compare our algorithm to Alternating Constrained Least
Squares (ACLS) introduced in [LBAD∗06] which is an itera-
tive procedure for performing the decomposition in Eq. 2 for
a regular matrix Z that allows placement of arbitrary linear
constraints on W and H. Similarly to our approach, it works
by solving a series of small convex QP problems.

For these comparisons, we use the bird and angels spa-
tially varying BRDF datasets from Lensch et al [LKG∗01]
which contain 1.9 million and 1.6 million BRDF samples,
respectively. These samples are obtained from 25 and 27 im-
ages of known geometry. We empirically determined their
respective number of primary basis functions to be K = 5
and K = 11. Unlike planar samples, images of curved sur-
faces contain very sparse angular measurements at any sin-
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Figure 8: Three of five terms in a factorization of the bird
dataset using a BRDF database as the secondary basis. Top:
Blending weights, constrained to be non-negative, are shown
as grayscale images. Bottom: corresponding basis BRDFs
are visualized as lit spheres.

Figure 9: The secondary basis BRDFs from Matusik et
al. [MPBM03a] are combined to form the primary linear ba-
sis functions (only those few secondary basis functions with
non-zero weights from our factorization of the bird dataset
are shown here).

gle location, but cover a wide range of normals in a single
image. For these datasets, each row of Z contains approxi-
mately eight reflectance measurements on average.

Although ACLS allows low confidence values for undersam-
pled regions of Z, significant interpolation is still necessary
for this extremely sparse data. We reconstruct each row of
Z at the same angular resolution reported in [LBAD∗06]
of 100× 30× 15 (θh × θd × φd) using the push-pull algo-
rithm [GGSC96] and a Gaussian reconstruction kernel (note
that Z therefore has 135,000 columns). The width of the re-
construction kernel was carefully selected to prevent over-
smoothing while providing complete coverage of the do-
main, although some smoothing was unavoidable.

We compare our decomposition algorithm, using both RBFs
and the MERL-MIT BRDF database, to ACLS in terms of
their respective running times, memory consumption, and
visual and numerical error using a Dell Precision 390 with
a 1.8GHz Core 2 Duo processor and 3GB of memory. We
compare their performance as a function of the number of
subsampled rows used to compute the factorization and re-
port the RMS error for the weighted metric in Eq. 15 across
the entire dataset.

Pre UpdateW UpdateH
ACLS MPN̄ MK3 PK3

OURS MLN̄ MKLN̄ +MK3 ML2(N̄2 +K2)+K3L3

Table 1: Asymptotic running time of the precomputation, up-
date W step, and update W step for ACLS and our algo-
rithm. (M=subsampled rows; P=columns in regular sam-
pled intermediate matrix; N̄=average number of angular
measurements per spatial position; K=number of primary
basis functions; L=number of secondary basis functions)

Table 1 lists the asymptotic running time of each major stage
in these algorithms. The graph in Fig. 10 shows the memory
consumption of each algorithm and Fig. 11 plots measured
running times for each dataset, along with a breakdown of
the time spent in each of the major phases: precomputation,
factorization, and backprojection. Because ACLS must store
and process a matrix with P = 135,000 columns, it exceeds
the memory capacity of our machine at∼1K rows and we do
not report statistics beyond this limit. The running time and
memory consumption of ACLS is clearly dominated by pre-
computing and processing the enormous M×P intermediate
matrix. On the other hand, our algorithm is bound by the
solving a (KL×KL) QP problem during the update H step
(recall that we cannot estimate the columns in H indepen-
dently as can be done in ACLS). This bottleneck becomes
apparent when both L and K are relatively large as is the
case when fitting RBFs to the angel dataset (see Fig. 11).

The graph in Fig. 12 reports error in the resulting factoriza-
tion as a function of input size for the different algorithms
and Fig. 13 shows side-by-side comparisons to accompany
these measurements. Because Euclidean distance is a crude
approximation to perceptual differences the visual compar-
isons reveal more about the relative performance of these
methods. These results clearly indicate that the secondary
basis provides a direct trade-off between the flexibility (and
accuracy) of the representation and the amount of data (and
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Figure 10: Memory usage of ACLS and our approach for
two different secondary bases. This trend is dominated by the
size of the interpolated data matrices for ACLS and by the
A matrices in our algorithm (Eq. 4). Although these datasets
use a different number of primary basis functions K, they
exhibit nearly identical memory consumption.
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Figure 11: Running times for factoring the bird dataset into 5 terms as a function of the percentage of the input considered
for different choices of secondary basis functions.

corresponding running times) that must be accommodated
to make the optimization robust. RBFs are able to achieve
an overall better match to measured data (in terms of numer-
ical error) for increasingly large input sets, but at the cost of
longer running times and greater memory consumption. In
fact, ACLS can be regarded as the extreme point along this
axis: it has enormous flexibility in its representation but re-
quires a considerable amount of data to make this estimation
robust and justify its expense. Not surprisingly, for this type
of extremely sparse input it is not an appropriate represen-
tation and the significant interpolation required can attenu-
ate or altogether miss important features in the data. This is
most noticeable in the poorly recovered specular highlights
for the bird model in Fig. 13. At the opposite extreme, a
smaller and more restrictive secondary basis like the BRDF
database performs very well for small input sizes and with
less space and time requirements but clearly reaches a limit
beyond which additional input samples will not affect the
optimization.

7. Discussion and Future Work

We have presented a technique for efficiently performing ba-
sis decomposition from scattered appearance measurements.
The key benefit of our approach is that it allows selecting a
representation whose flexibility is appropriate for the nature
and density of the available data. This is accomplished by
representing each primary basis function as a weighted com-
bination of a predetermined set of secondary basis functions.
We introduced an iterative procedure that computes the op-
timal decomposition using quadratic programming methods
that can accommodate additional linear constraints. Our re-
sults compare favorably with currently available methods
such as ACLS for the case of decomposing and represent-
ing SVBRDFs, and we have analyzed the use of RBFs and a
BRDF database as secondary bases. Here, we discuss some

existing limitations of our approach and propose further di-
rections of study and applications of our work.

Broader Analysis: Further study of our proposed decompo-
sition technique is warranted to more completely evaluate its
applicability for representing more general scattered visual
data. We would like to evaluate additional secondary bases
(e.g., wavelets) for a variety of high-dimensional measured
data beyond the SVBRDFs that we have described. In the
future, we would like to assess our technique’s effectiveness
in representing BSSRDFs [PvBM∗06], BTFs [DvNK99], or
time-varying reflectance data [GTR∗06]. Other such appli-
cations could include representing motion capture data, 3D
surface data, and datasets outside computer graphics that in-
volve scattered measurements in higher-dimensions.

Probabilistic Framework: There is a strong connection
between our decomposition algorithm and the use of
Expectation-Maximization (EM) [DLR77] to estimate the
parameters of a probabilistic data model. Developing gen-
erative models for more general classes of material appear-
ance along with methods for inferring their parameters from
measured data is an interesting direction of future research.

Data-Driven Bases: We would like to further explore how
data-driven reflectance models might be used to guide basis
estimation of higher-dimensional appearance functions. For
this approach to be applicable to a wider range of data, there
must be increased availability of high-quality (low noise),
densely sampled, and comprehensive datasets.
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Figure 13: Visual comparison to ACLS for two secondary bases applied to the bird and angel datasets. Below each image
we report (running time in minutes / RMS error). For 32,768 rows, the space and time requirements of ACLS exceed available
resources by an order of magnitude and were not included (shown as gray boxes). c© The Eurographics Association 2007.

218


