
HIPI: A Hadoop Image Processing Interface

for Image-based MapReduce Tasks

Chris Sweeney Liu Liu Sean Arietta Jason Lawrence

University of Virginia

Hipi Image
Bundle

Images
1...k

...

images
n-k....n

Cull

Map 1

...

Map i

Shuffle

Reduce 1

...

Reduce j

Result

Figure 1: A typical MapReduce pipeline using our Hadoop Image Processing Interface with n images, i map nodes, and j reduce nodes

Abstract

The amount of images being uploaded to the internet is rapidly in-
creasing, with Facebook users uploading over 2.5 billion new pho-
tos every month [Facebook 2010], however, applications that make
use of this data are severely lacking. Current computer vision ap-
plications use a small number of input images because of the dif-
ficulty is in acquiring computational resources and storage options
for large amounts of data [Guo. . . 2005; White et al. 2010]. As
such, development of vision applications that use a large set of
images has been limited [Ghemawat and Gobioff. . . 2003]. The
Hadoop Mapreduce platform provides a system for large and com-
putationally intensive distributed processing (Dean, 2004), though
use of Hadoops system is severely limited by the technical com-
plexities of developing useful applications [Ghemawat and Gob-
ioff. . . 2003; White et al. 2010]. To immediately address this, we
propose an open-source Hadoop Image Processing Interface (HIPI)
that aims to create an interface for computer vision with MapRe-
duce technology. HIPI abstracts the highly technical details of
Hadoop’s system and is flexible enough to implement many tech-
niques in current computer vision literature. This paper describes
the HIPI framework, and describes two example applications that
have been implemented with HIPI. The goal of HIPI is to create
a tool that will make development of large-scale image processing
and vision projects extremely accessible in hopes that it will em-
power researchers and students to create applications with ease.

Keywords: mapreduce, computer vision, image processing

1 Introduction

Many image processing and computer vision algorithms are appli-
cable to large-scale data tasks. It is often desirable to run these
algorithms on large data sets (e.g. larger than 1 TB) that are cur-
rently limited by the computational power of one computer [Guo. . .
2005]. These tasks are typically performed on a distributed system
by dividing the task across one or more of the following features:
algorithm parameters, images, or pixels [White et al. 2010]. Per-
forming tasks across a particular parameter is incredibly parallel
and can often be perfectly parallel. Face detection and landmark
classification are examples of such algorithms [Li and Crandall. . .
2009; Liu et al. 2009]. The ability to parallelize such tasks allows
for scalable, efficient execution of resource-intensive applications.
The MapReduce framework provides a platform for such applica-
tions.

Basic vision applications that utilize Hadoops MapReduce frame-
work require a staggering learning curve and overwhelming com-
plexity [White et al. 2010]. The overhead required to imple-
ment such applications severely cripples the progress of researchers
[White et al. 2010; Li and Crandall. . . 2009]. HIPI removes
the highly technical details of Hadoops system and provides users
with the familiar feel of an image library with the access to the
advanced resources of a distributed system [Dean and Ghemawat
2008; Apache 2010]. Our platform is focused around giving users
unprecedented access to image-based data structures with a pipeline
that is intuitive to the MapReduce system, allowing for easy and
flexible use for vision applications. Because of the similar goals in
our frameworks, we take particular inspiration from the Franken-
camera project as a model for designing an open API to provide
access to computing resources.

We have designed HIPI with the aims of providing a platform spe-
cific enough to contain a relevant framework applicable for all
image processing and computer vision applications but flexible
enough to withstand continual changes and improvements within
Hadoops Mapreduce system. We expect HIPI to promote vision re-
search for these reasons. HIPI is largely a software design project,
driven by the overarching goals of abstracting of Hadoop’s func-
tionality into an image-centric system and providing an extendible

system that will provide researchers with a tool to effectively use
Hadoops Mapreduce system for image processing and computer vi-
sion. We believe that this ease of use and user control will make
the process for creating large-scale vision experiments and applica-
tions. As a result, HIPI serves as an excellent tool for researchers
in computer vision because it allows development of large-scale
computer vision applications to be more accessible than ever. To
our knowledge, we are the first group to provide an open interface
for image processing and computer vision applications for Hadoops
Mapreduce platform [White et al. 2010].

In the following section, we will describe previous work in this
area. In particular, we discuss the motivation for creating an image-
based framework that allows large-scale vision applications. Next,
we describe the the overview for the HIPI library including the cull,
map, and reduce stages. Additionally, describe our approach for
distributing tasks for the MapReduce pipeline. Finally, we demon-
strate the capabilities of HIPI with two examples of vision applica-
tions using HIPI.

2 Prior Work

With the proliferation of online photo storage and social medias
from websites such as Facebook, Flickr, and Picasa, the amount of
image data available is larger than ever before and growing more
rapidly every day [Facebook 2010]. This alone provides an incred-
ible database of images that can scale up to billions of images. In-
credible statistical and probabilistic models can be built from such
a large sample source. For instance, a database of all the textures
found in a large collection of images can be built and used by re-
searchers or artists. The information can be incredibly helpful for
understanding relationships in the world1. If a picture is worth a
thousand words, we could write an encyclopedia with the billions
of images available to us on the internet.

These images are enhanced, however, by the fact that users are sup-
plying tags (of objects, faces, etc.), comments, titles, and descrip-
tions of this data for us. This information supplies us with an amaz-
ing amount of unprecedented context for images. Problems such as
OCR that remain largely unsolved can make bigger strides with this
available context guiding them. Stone et al. describe in detail how
social networking sites can leverage facial tagging features to sig-
nificantly enhance facial recognition. This idea can be applied to a
wider range of image features that allow us to examine and analyze
images in a revolutionary way.

It is these reasons that motivate the need for research with vision
applications that take advantage of large sets of images. MapRe-
duce provides an extremely powerful framework that works well on
data-intensive applications where the model for data processing is
similar or the same. It is often the case with image-based operations
that we perform similar operations throughout an input set, making
MapReduce ideal for image-based applications. However, many re-
searchers find it impractical to be able to collect a meaningful set of
images relevant to their studies [Guo. . . 2005]. Additionally, many
researchers do not have efficient ways to store and access such a
set of images. As a result, little research has been performed on
extremely large image-sets.

1One can imagine that applications such as object detection could pro-
vide information that enable researchers to recognize the relationships be-
tween certain objects (e.g. bumblebees are often in pictures of flowers).
There are many examples of useful applications such as these.

3 The HIPI Framework

HIPI was created to empower researchers and present them with a
capable tool that would enable research involving image processing
and vision to be performed extremely easily. With the knowledge
that HIPI would be used for researchers and as an educational tool,
we designed HIPI with the following goals in mind.

1. Provide an open, extendible library for image processing and
computer vision applications in a MapReduce framework

2. Store images efficiently for use in MapReduce applications

3. Allow for simple filtering of a set of images

4. Present users with an intuitive interface for image-based op-
erations and hide the details of the MapReduce framework

5. HIPI will set up applications so that they are highly paral-
lelized and balanced so that users do not have to worry about
such details

3.1 Data Storage

Hadoop uses a distributed file system to store files on various ma-
chines throughout the cluster. Hadoop allows files be accessed,
however, without knowledge of where it is stored in the cluster,
so that users can reference files the same way they would on a local
machine and Hadoop will present the file accordingly.

When performing MapReduce jobs, Hadoop attempts to run Map
and Reduce tasks at the machines were the data being processed is
located so that data does not have to be copied between machines
[Apache 2010]. As such, MapReduce tasks run more efficiently
when the input is one large file as opposed to many small files2.
Large files are significantly more likely to be stored on one machine
whereas many small files will likely be spread out among many dif-
ferent machines, which requires significant overhead to copy all the
data to the machine where the Map task is [Ghemawat and Gob-
ioff. . . 2003]. This overhead can slow the runtime ten to one hun-
dred times [White 2010]. Simply put, the MapReduce framework
operates more efficiently when the data being processed is local to
the machines performing the processing.

Figure 2: A depiction of the relationship between the index and data
files in a HIPI Image Bundle

2Small files are files that are considerably smaller than the file block size
for the machine where the file resides

With this in mind, we created a HIPI Image Bundle data type that
stores many images in one large file so that MapReduce jobs can be
performed more efficiently. A HIPI Image Bundle consists of two
files: a data file containing concatenated images and an index file
containing information about the offsets of images in the data file
as shown in Figure-2. This setup allows us to easily access images
across the entire bundle without having to read in every image.

We observed several benefits of the HIPI Image Bundle in tests
against Hadoop’s Sequence file and Hadoop Archive (HAR) for-
mats. As White et. al. note, HARs are only useful for archiving
files (as backups), and may actually perform slower than reading in
files the standard way. Sequence files perform better than standard
applications for small files, but must be read serially and take a very
long time to generate. HIPI Image Bundle have similar speeds to
Sequence files, do not have to be read serially, and can be generated
with a MapReduce program [White 2010; Conner 2009]. Addition-
ally, HIPI Image Bundles are more customizable and are mutable,
unlike Sequence and HAR files. For instance, we have implemented
the ability to only read the header of an image file using HIPI Image
Bundles, which would be considerably more difficult with other file
types. Further features of the HIPI Image Bundles are highlighted
in the following section

3.2 Image-based MapReduce

Standard Hadoop MapReduce programs handle input and output
of data very effectively, but struggle in representing images in a
format that is useful for researchers. Current methods involve sig-
nificant overhead to obtain standard float image representation. For
instance, to distribute a set of images to a set of Map nodes would
require a user to pass the images as a String, then decode each im-
age in each map task before being able to do access pixel informa-
tion. This is not only inefficient, but inconvenient. These tasks can
create headaches for users and make the code look cluttered and
difficult to interpret the intent of the code. As such, sharing code
is less efficient because the code is harder to read and harder to
debug. Our library focuses on bringing familiar image-based data
types directly to the user for easy use in MapReduce applications.

INPUT:
HIPI Image

Bundle Map task

encoded
images
(jpeg,

png, etc.)

encoded
images
(jpeg,

png, etc.)

encoded
images
(jpeg,

png, etc.)

float
images

float
images

float
images

Map task

Map task

Performed by HIPI
behind the scenes

Figure 3: The user only needs to specify a HIPI Image Bundle as an
input, and HIPI will take care of parallelizing the task and sending
float images to the mappers

Using the HIPI Image Bundle data type as inputs, we have created
an input specification that will distribute images in the HIPI Image

Bundle across all map nodes. We distribute images such that we
attempt maximize locality between the mapper machines and the
machine where the image resides. Typically, a user would have to
create InputFormat and RecordReader classes that specify how the
MapReduce job will distribute the input, and what information gets
sent to each machine. This is task is nontrivial and often becomes a
large point of headaches for users. We have included InputFormat
and RecordReaders that take care of this for the user. Our specifica-
tion works on HIPI Image Bundles for various image types, sizes,
and varying amounts of header and exif information. We handle
all of these different image permutations behind the scenes to bring
images straight to the user as float images. No work is needed to be
done by the user, and float images are brought directly to the Map
tasks in a highly parallelized fashion.

During the distribution of inputs but before the map tasks start we
introduce a culling stage to the MapReduce pipeline. The culling
stage allows for images to be filtered based on image properties.
The user specifies a culling class that describes how the images will
be filtered (e.g. pictures smaller than 10 megapixels, pictures with
GIS location header data). Only images that pass the culling stage
will be distributed to the map tasks, preventing unnecessary copy-
ing of data. This process is often very efficient because culling often
occurs based on image header information, so it is not required to
read the entire image.

Additionally, images are distributed as float images so that users
can immediately have access to pixel values for image processing
and vision operations. Images are always stored as standard image
types (e.g. JPEG, PNG, etc.) for efficient storage, but HIPI takes
care of encoding and decoding images to present the user with float
images within the MapReduce pipeline. As a result, programs such
as calculating the mean value of all pixels in a set of images can
be written in merely lines. We provide operations such as cropping
for image patches extraction. It is often desirable to access image
header and exif information without need for pixel information, so
we have abstracted this information from the pixel data. This is
particularly useful for the culling stage, and for applications such
as im2gis3 that need access to metadata. Presenting users with intu-
itive interfaces for accessing data relevant to image processing and
vision applications will allow for more efficient creation of MapRe-
duce applications.

4 Examples

We describe two non-trivial applications performed using the HIPI
framework to create MapReduce jobs. These applications are in-
dicative of the types of applications that HIPI enables users con-
cerned with large-scale image operations to easily do. These exam-
ples are difficult and inefficient on existing platforms, yet simple to
implement with the HIPI API.

4.1 Principal Components of Natural Images

As an homage to Hancock et. al, we computed the first 15 prin-
cipal components of natural images. However, we decided instead
of randomly sampling one patch from 15 images, we sampled over
1000 images and 100 patches in each. The size of our input set was
10,000 times larger than the original experiment. Additionally, we
did not limit our images to natural images like the original experi-
ment (though we could do this in the cull stage). As such, results
differ but hold similar characteristics.

We parallelize the process of computing the covariance matrix for
the images according to the following formula, where xi is a sample

3http://graphics.cs.cmu.edu/projects/im2gps/

Figure 4: The first 15 principal components of 15 randomly sam-
pled natural images, as observed by Hancock et al. from left to
right, top to bottom

Figure 5: The first 15 principal components of 100,000 randomly
sampled image patches, as calculated with HIPI from left to right,
top to bottom

patch and x̄ is the sample patch mean

COV =
1

n� 1

nX

i=1

(xi � x̄)(xi � x̄)T (1)

Equation-1 suits HIPI perfectly because the summation is grossly
parallel. In other words, we can easily compute each term in the
summation independently (assuming we already have the mean),
thus, we can compute each term in parallel. We first run a MapRe-
duce job to compute the sample mean, then use that as x̄ for fu-
ture covariance calculation. Then, we run a MapReduce job that
computes (xi � x̄)(xi � x̄)T for all 100 patches from each im-
age4. Because HIPI allocates one image per map task, it is simple
to randomly sample an image for 100 patches and perform this cal-
culation. Each map task will then emit the summation of its partial
covariances sampled from the image to the reducer, where all par-
tial covariances will be summed to calculate the covariance for the
entire sample set.

After determining the covariance for 100,000 randomly sampled
patches, we used Matlab to find the first 15 principal components.
As expected, images do not correlate perfectly because we are using
far different inputs to our experiments, and our display of positive
and negative values also may differ slightly. However, certain prin-
cipal components are the same (1, 7, 12), are merely switched (2
and 3, 4 and 5), or show some resemblance to the original exper-
iment (15). Performing a principal component analysis on a mas-

4We call this partial sum the partial covariance

sive, unrestricted data set gives us unparalleled knowledge about
images. For tasks such as these, HIPI excels.

4.2 Downloading Millions of Images

Step 1: Specifiy a list of images to collect. We assume that there
exists a well-formed list containing url’s of images to download.
This list should be stored in a text file with exactly one image url
per line. This list can be generated by hand, from MySQL, or from a
search query (e.g. google images, flickr, etc.). In addition to the list
of images, the user will input the number of nodes to run the task.
According to this input, we divide the image set across the speci-
fied number of nodes for maximum efficiency and parallelism when
downloading the images. Each node in the Map task will generate
a HIPI Image Bundle containing all of the images it downloaded,
then the Reducer will merge all the HIPI Image Bundles together to
form one large HIPI Image Bundle.

List of image
urls

Map Node
1

Map
Node ...

Map Node
n

HIPI Image
Bundle 1

HIPI Image
Bundle...

HIPI Image
Bundle n

Reduce HIPI Image
Bundle

Figure 6: A demonstration of the parallelization in the Downloader
application. The task of downloading the list of images urls is split
amongst n map tasks. Each mapper creates a HIPI Image Bundle,
which is merged into one large HIPI Image Bundle in the Reduce
phase

Step 2: Split URLs into groups and send each group to a Map-

per. Using the inputted list of image urls and the number of nodes
used to download these images, we equally distribute the task of
downloading images to the specified number of map nodes. This
allows for maximum parallelization for the downloading process.
Image urls are been distributed to the various nodes equally, and
the map tasks will begin downloading each image in the set of urls
it is responsible for, as Figure-6 shows.

Step 3: Download images from the internet. We then establish
a connection to the url retrieved from the database and download
the image using java’s URLConnection class. Once connected, we
check the file type to make sure it is a valid image, and get an Input-
Stream to the connection. From this, we can use the InputStream to
add the image to a HIPI Image Bundle.

Step 4: Store images in a HIPI Image Bundle. Once the Input-
Stream is received from the URLConnection, we can add the image
to a HIPI Image Bundle simply by passing the InputStream to the
addImage method. Each map task will then generate a HIPI Image
Bundle, and the Reduce phase will merge all of the bundles together
into one large bundle.

By storing images this way, you are able to take advantage of our
HIPI framework for MapReduce tasks that you want to perform on
image sets at a later point. For example, to check the results of the
Downloader program, we ran a very simple MapReduce Program
(7 lines) that was able to take the HIPI Image Bundle and write out
the images to individual JPEG files on the HDFS effortlessly.

5 Conclusion

This paper has described our library for image processing and vi-
sion applications on a MapReduce framework - Hadoop Image Pro-
cessing Interface (HIPI). This library was carefully designed to hide
the complex details of Hadoop’s powerful MapReduce framework
and bring to the forefront what users care about most: images. Our
system has been created with the intent to operate on large sets of
images. We provide a format for storing images for efficient access
within the MapReduce pipeline, and simple methods for creating
such files. By providing a culling stage before the mapping stage,
we give the user a simple way to filter image sets and control the
types of images being used in their MapReduce tasks. Finally, we
provide image encoders and decoders that run behind the scenes
and work to present the user with float image types which are most
useful for image processing and vision applications.

Through these features, our interface brings about a new level of
simplicity for creating large-scale vision applications with the aim
of empowering researchers and teachers with a tool for efficiently
creating MapReduce applications focused around images. This pa-
per describes two example applications built with HIPI that demon-
strate the power it presents users with. We hope that by bring the
resources and power of MapReduce to the vision community that
we will enhance the ability to create new vision projects that will
enable users to push the field of computer vision.

6 Acknowledgements

We would like to give particular thanks to PhD Candidate Sean Ari-
etta for his guidance and mentoring throughout this project. His
leadership and vision have been excellent models and points of
learning for us throughout this process. Additionally, we must give
great thanks to Assistant Professor Jason Lawrence for his support
throughout the past several years and for welcoming us into UVa’s
Graphics Group as bright eyed undergraduates.

References

ADAMS, A., JACOBS, D., DOLSON, J., TICO, M., PULLI, K.,
TALVALA, E., AJDIN, B., VAQUERO, D., LENSCH, H., AND
HOROWITZ, M. 2010. The frankencamera: an experimental
platform for computational photography. ACM SIGGRAPH 2010
papers, 1–12.

APACHE, 2010. Hadoop mapreduce framework.
http://hadoop.apache.org/mapreduce/.

CONNER, J. 2009. Customizing input file formats for image
processing in hadoop. Arizona State University. Online at:
http://hpc. asu. edu/node/97.

DEAN, J., AND GHEMAWAT, S. 2008. Mapreduce: Simplified data
processing on large clusters. Communications of the ACM 51, 1,
107–113.

FACEBOOK, 2010. Facebook image storage.
http://blog.facebook.com/blog.php?post=206178097130.

GHEMAWAT, S., AND GOBIOFF. . . , H. 2003. The google file
system. ACM SIGOPS Operating . . . (Jan).

GUO. . . , G. 2005. Learning from examples in the small sample
case: face expression recognition. Systems (Jan).

HANCOCK, P., BADDELEY, R., AND SMITH, L. 1992. The prin-
cipal components of natural images. Network: computation in
neural systems 3, 1, 61–70.

LI, Y., AND CRANDALL. . . , D. 2009. Landmark classification in
large-scale image collections. Computer Vision (Jan).

LIU, K., LI, S., TANG, L., AND WANG. . . , L. 2009. Fast face
tracking using parallel particle filter algorithm. Multimedia and
Expo (Jan).

STONE, Z., AND ZICKLER. . . , T. 2010. Toward large-scale face
recognition using social network context. Proceedings of the
IEEE (Jan).

WHITE, B., YEH, T., LIN, J., AND DAVIS, L. 2010. Web-scale
computer vision using mapreduce for multimedia data mining.
Proceedings of the Tenth International Workshop on Multimedia
Data Mining, 1–10.

WHITE, 2010. The small files problem.
http://www.cloudera.com/blog/2009/02/the-small-files-
problem/.

View publication statsView publication stats

